The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study.
نویسندگان
چکیده
Measurement error in explanatory variables and unmeasured confounders can cause considerable problems in epidemiologic studies. It is well recognized that under certain conditions, nondifferential measurement error in the exposure variable produces bias towards the null. Measurement error in confounders will lead to residual confounding, but this is not a straightforward issue, and it is not clear in which direction the bias will point. Unmeasured confounders further complicate matters. There has been discussion about the amount of bias in exposure effect estimates that can plausibly occur due to residual or unmeasured confounding. In this paper, the authors use simulation studies and logistic regression analyses to investigate the size of the apparent exposure-outcome association that can occur when in truth the exposure has no causal effect on the outcome. The authors consider two cases with a normally distributed exposure and either two or four normally distributed confounders. When the confounders are uncorrelated, bias in the exposure effect estimate increases as the amount of residual and unmeasured confounding increases. Patterns are more complex for correlated confounders. With plausible assumptions, effect sizes of the magnitude frequently reported in observational epidemiologic studies can be generated by residual and/or unmeasured confounding alone.
منابع مشابه
Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics.
BACKGROUND Large health care utilization databases are frequently used to analyze unintended effects of prescription drugs and biologics. Confounders that require detailed information on clinical parameters, lifestyle, or over-the-counter medications are often not measured in such datasets, causing residual confounding bias. OBJECTIVE This paper provides a systematic approach to sensitivity a...
متن کاملMethodological issues of confounding in analytical epidemiologic studies
Background: Confounding can be thought of as mixing the effect of exposure on the risk of disease with a third factor which distorts the measure of association such as risk ratio or odds ratio. This bias arises because of complex functional relationship of confounder with both exposure and disease (outcome). In this article, we provided a conceptual framework review of confounding issues in epi...
متن کاملPractice of Epidemiology Implications of M Bias in Epidemiologic Studies: A Simulation Study
Collider-stratification bias arises from conditioning on a variable (collider) which opens a path from exposure to outcome. M bias occurs when the collider-stratification bias is transmitted through ancestors of exposure and outcome. Previous theoretical work, but not empirical data, has demonstrated that M bias is smaller than confounding bias. The authors simulated data for large cohort studi...
متن کاملImplications of M bias in epidemiologic studies: a simulation study.
Collider-stratification bias arises from conditioning on a variable (collider) which opens a path from exposure to outcome. M bias occurs when the collider-stratification bias is transmitted through ancestors of exposure and outcome. Previous theoretical work, but not empirical data, has demonstrated that M bias is smaller than confounding bias. The authors simulated data for large cohort studi...
متن کاملBayesian sensitivity analysis for unmeasured confounding in observational studies.
We consider Bayesian sensitivity analysis for unmeasured confounding in observational studies where the association between a binary exposure, binary response, measured confounders and a single binary unmeasured confounder can be formulated using logistic regression models. A model for unmeasured confounding is presented along with a family of prior distributions that model beliefs about a poss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of epidemiology
دوره 166 6 شماره
صفحات -
تاریخ انتشار 2007